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In this paper we present new multigrid line smoothers for the solution of higher
order discretizations of convection-dominated problems directly. The behavior of the
smoothers is analyzed theoretically with Fourier smoothing and two-grid analysis.
A parallel tri-line variant is presented and evaluated. The smoothers are applied
to scalar convection-diffusion problems, discretized with limiters and systems of
incompressible Navier–Stokes and Euler equations.c© 1998 Academic Press
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1. INTRODUCTION

Multigrid methods are generally accepted as fast efficient solution methods, especially for
elliptic problems when the discretization results in anM-matrix [22]. For these problems,
basic iterative methods, like point or line Gauss–Seidel methods are not satisfactory solvers,
but they are efficientsmoothers. This means that, instead of solving all frequencies of the
error components, they efficiently reduce the high frequency components and therefore
smooth the error between numerical and exact solution. A smoother is one essential part
of a multigrid method. The other part is the coarse grid correction, which is based on the
knowledge that a smooth error can be well represented on coarser grids. On a coarser grid
a smoother can then reduce the “high” frequencies corresponding to this grid. By repeating
this procedure on several grids, the multigrid solution method is obtained. More details on
multigrid can be found in [2, 10, 20, 24]. The multigrid method is also commonly used for
singularly perturbed problems, like convection-dominated (systems of) equations. Here, the
error is not only smoothed, it is also reduced along the characteristic direction of a convection
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operator. For these problems, however, good smoothers are not necessarily the same ones
as in the full elliptic case. Basic iterative methods with grid point ordering “against the
flow,” for example, do not smooth the error. Also the quality of a smoother depends on the
discretization used for the convection terms. Efficient smoothers for convection-dominated
problems are the main topic of this paper.

Higher order finite difference or finite volume discretizations of convection-dominated
problems, on the basis of van Leer’sκ-schemes [21], do not result inM-matrices and their
multigrid treatment is not as efficient as for Poisson-like problems. Usually,κ-scheme dis-
cretizations are solved indirectly with a defect correction technique, where multigrid is used
for solving the first-order discretization. The higher order discretization scheme is then used
as an outer iteration. In the defect correction approach often the outer iteration determines
the convergence speed, which can be slow if the first and higher order discretizations are
very different.

A second popular approach, in which higher order discretizations are solved directly in
multigrid, is with the help of multistage smoothers [12, 24]. These smoothers are point
smoothers of Jacobi type and are, therefore, limited in their robustness with respect to
problems discretized on grids with stretched cells.

In this paper, instead of the two approaches mentioned above, a robust alternative is pre-
sented, in which the higher order upwind discretization is also solved directly in multigrid.
We present line smoothers based on a splitting of the operator into a “positive” part on the
left-hand side and the remaining part on the right-hand side. Positive parts (a positive main
diagonal and nonpositive off-diagonal elements) are required in the left-hand side, in order
to assure a splitting to have smoothing properties. The smoothers based on this splitting can
be of alternating, symmetric, or zebra type and are called KAPPA smoothers here.

The resulting splitting is analyzed with Fourier smoothing analysis [2] for a linear
convection diffusion equation discretized with theκ-scheme, similar to Wesseling [24]
(for the standard upwind discretization). Furthermore, two-grid Fourier analysis [20, 5] is
applied.

A parallel variant is a tri-line zebra smoother, due to the fact that a higher order 1D
upwind stencil contains four elements. It is evaluated whether the parallel smoother is an
interesting competitor for the robust (nonparallel) symmetric alternating line smoother. In
Section 2.1 we will briefly describe the discretization of the convective terms. In Section 2.2
the multigrid solution method with the new splitting for the line smoothers is introduced.
The theoretical results are compared to the actual multigrid convergence for model problems
in Section 3. In the two-grid analysis we observe the discrepancy between the scaling of
convection and diffusion on fine and coarse grids, as is studied in [4, 3] and mentioned in [5].
For the “inflow/outflow” problems evaluated here we will not see the negative effect of the
different scaling on the multigrid convergence, due to the influence of the combination of
Dirichlet boundary conditions and the line smoothers, which reduce not only high frequency,
but also low frequency error components. Overweighting of residuals [4], or a Krylov
acceleration [15] as a way to improve the convergence (mainly for rotating convection-
dominated problems) is not needed here and, therefore, not adopted.

The multigrid solution method used here is the nonlinear FAS [2] scheme, because we
will also investigate the influence on the multigrid convergence of discretization schemes
with limiters. Discretizations with limiters lead to nonlinear discretizations, even for linear
problems. Numerical tests for linear and nonlinear convection-dominated scalar problems
are performed on fine grids in Section 5, where the new method is compared with the defect
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correction approach. Furthermore, the smoothers are tested for systems of incompressible
Navier–Stokes and compressible Euler equations.

2. THE DISCRETIZATION AND THE SOLUTION METHOD

2.1. Higher Order Upwind Discretization of a Convection Term

We consider a linear variant of the convection–diffusion equation,

Lφ = (aφ)x + (bφ)y − ε1φ = f, (1)

where 0< ε ¿ 1,1denotes the Laplacian,a, b,and f are given functions possibly depend-
ing on x and y. We discretize (1) on a grid with mesh sizehx = hy = h. The diffusion
term is approximated with the standard five point approximation. For the convection terms
(aφ)x and(aφ)y, we distinguish between different upwind approximations. In general a
good discretization for convection should obey two important requirements:

1. The discretization should beO(h2) accurate (at least for “smooth” parts of a solution).
2. The discretization should be monotone. This means that a solution should not contain

wiggles, spurious oscillations that result in local unphysical extrema.

The standard upwind discretization for(aφ)x looks (fora = const> 0) like

(aφ)x = a

h
(φi, j − φi−1, j ) =: L1. (2)

However, it is well known that this discretization scheme is onlyO(h) accurate. A first
choice for obtaining second-order accurate schemes with a linear discretization is the class
of κ-schemes, which work satisfactorily for a large class of CFD problems, including
the incompressible Navier–Stokes equations. Theκ-schemes are, however, not monotone,
which means that they have to be modified (with limiters) for CFD problems containing
strong gradients or boundary layers.κ-schemes result in a linear discretization which enables
them to be easily analyzed (for example, with Fourier analysis). The discretization of(aφ)x
with van Leer’sκ-schemes [21] looks (fora = const> 0) like

(aφ)x = a

h
[(φi, j −φi−1, j )− κ

2
(φi, j −φi−1, j )+ 1+ κ

4
(φi+1, j − φi, j )− 1− κ

4
(φi−1, j −φi−2, j )].

= L1 + Lα + Lβ + Lγ (3)

Fora < 0 similar formulae are found, and the evaluation ofφy is straightforward. Further-
more, ifa = a(x, y) 6= const, (3) is easily changed by introducingai+1/2, j andai−1/2, j in
a standard finite difference or volume discretization. The resulting discretization obtained
with theκ-scheme is denoted byL2. The stencil for (1) with (3)(a, b = const> 0), and
κ = 0 (called Fromm’s scheme) looks like

[L2] = a

h
[1/4 − 5/4 3/4 1/4 0]+ b

h


0

1/4
3/4
−5/4
1/4

+ ε

h2

 0 −1 0
−1 4 −1
0 −1 0

 . (4)
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The Fromm scheme is second-order accurate, whereas the cubic interpolation upwind (CUI)
scheme(κ = 1/3) [1] is formally third-order accurate in space, which can be confirmed by
Taylor’s expansion.

It can be seen from (4) thatκ-discretizations in general do not result inM-matrices [22]
for which it is well known that basic iterative methods, like Gauss–Seidel, are convergent
methods. Using the basic iterative methods as a smoother directly onL2 leads actually to
a divergingmethod. For multigrid smoothers it is essential that the discretization is taken
into account. Positive partsL1 + Lα of the second-order discretization (3) will be used
in the left-hand side. Positive parts (a positive main diagonal and nonpositive off-diagonal
elements) are required in the left-hand side, in order to assure that it is invertible. Positivity
is the point of departure for every smoothing method known.

As already mentioned, discretizations withκ-schemes produce unphysical oscillations
near sharp gradients or discontinuities in a solution. Therefore, total variation diminishing
(TVD) concepts have been introduced, preventing a solution from oscillating. An overview
of the TVD schemes is given in [11] and also in [25]. The basis for the so-called monotone
TVD discretizations is the introduction of limiters. Limiters result in nonlinear discretiza-
tions even for linear problems. We will evaluate the multigrid convergence for discretizations
with different limiters. A good starting point for the discretization with limiters is the dis-
cretization of (1) with (3) andκ = −1, the second-order upwind scheme, which looks
(for a > 0) like

(aφ)x = a

h
[(φi, j−φi−1, j )+ 1

2
(φi, j−φi−1, j )− 1

2
(φi−1, j−φi−2, j )] = L1+Lα+Lγ . (5)

The second-order upwind scheme is introduced as a first-order upwind schemeL1 plus
additional termsLα andLγ . (Again a similar splitting is found fora < 0 or for a andb
functions depending onx andy.) To satisfy TVD conditions the additional termsLα andLγ
are multiplied by limiters which are functions of the ratio of local differences of unknowns:

(aφ)x = a

h
[(φi, j − φi−1, j )+ 1

2
9(Ri−1/2)(φi, j − φi−1, j )− 1

2
9(Ri−3/2)(φi−1, j − φi−2, j )].

= L1 + Lα + Lγ (6)

Here,Ri−1/2 ≡ (φi+1, j−φi, j )/(φi, j−φi−1, j ) andRi−3/2 ≡ (φi, j−φi−1, j )/(φi−1, j−φi−2, j ).
It is well-defined in which region in a (R, 9(R))-diagram the limiting function9(R) should
lie, so that the resulting convection discretization is monotone and higher order accurate
[11, 25] (also shown in Figs. 1 and 2). In recent years many limiters have been proposed
and evaluated, since for every problem (compressible equations with shocks, turbulence
modeling, etc.) a corresponding best limiter can be constructed. Here we sum up some
of these limiters for which we investigate the multigrid convergence. Investigations on
accuracy with limiters for model problems and applications is done in many other papers.

We distinguish two classes of limiters. For the first class of limiters we will present a
robust convergence improvement in Section 4. The limiters in this class do not follow parts
of the line9(R) = 2R in the (R, 9(R))-plane. Some well-known limiters in this class are

9(R) = R2+ R

R2+ 1
, Van Albada limiter (7)

9(R) = |R| + R

R+ 1
, Van Leer limiter (8)
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FIG. 1. Three limiters and the monotonicity region in a(R, 9(R))-diagram.

9(R) = (|R| + R) (3R+ 1)

2(R+ 1)2
, ISNAS limiter [25]. (9)

(The limiters for which we do not give an explicit reference are well known and can be
found in [11, 25].) The limiters (7), (8), and (9) are presented in a(R, 9(R))-diagram in
Fig. 1. It can be seen that for all the limiters examined (6) is identical to (5) forR = 1,
which ensures second-order accuracy in smooth regions.

The second class of limiters is the class ofstrong compressivelimiters, whose function
values are 2Rnear the origin in the(R, 9(R))-diagram. Examples are the Superbee limiter,
the SMART limiter, and the limitedκ = 1/3 scheme:

9(R) = max [0,min(2R, 1),min(R, 2)], Superbee limiter (10)

9(R) = max

[
0,min

(
4,

3

4
R+ 1

4
, 2R

)]
, SMART limiter [8] (11)

9(R) = max

[
0,min

(
2,

2

3
R+ 1

3
, 2R

)]
, κ = 1/3 limiter [14]. (12)

These limiters are shown in Fig. 2. When the values from 2R are chosen the resulting
discretization fora > 0 becomes

(aφ)x = a

h
[−φi, j + φi+1, j ]. (13)

The negative main diagonal element already indicates that fast convergence with iterative
methods for the steady equation discretized with a limiter from class 2 might not be trivial.

As in (5), it can be seen from (6) and from the definition of the limiters, thatLα in (6) is
always positive.
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FIG. 2. Three “2R”-limiters (they follow the function9 = 2R near the origin) and the monotonicity region
in a (R, 9(R))-diagram.

Boundary discretization. The schemes used here employ more than nearest neighbors,
which means that special care is needed near boundaries. We discretize the first line of cells
near a boundary with the central difference scheme (κ = 1). In the numerical experiments,
it was found really necessary to use second-order accurate schemes near boundaries in order
to keep the overall accuracy. Wiggles, spurious oscillations due to the central differencing,
were never observed in the test examples evaluated.

2.2. The Multigrid Solution Method

A general representation ofL2φ looks like

L2φ =
∑
µxεJ

∑
µyεJ

a(2)µxµy
φi+µx, j+µy, (14)

with coefficientsa(2)µxµy
coming for the second-orderκ formulation or from a linearization

(in our case, Picard) of the limited formulation and a set of indicesJ = {−2,−1, 0, 1, 2}.
By using the stencil notationL2 can be rewritten as

L2 =



a(2)02

a(2)01

a(2)−20 a(2)−10 a(2)00 a(2)10 a(2)20

a(2)0−1

a(2)0−2


. (15)

We will solve the discretization from (15) directly with a multigrid solution method. Here,
we will introduce two splittings for which it will be shown in the next section that they are
robust smoothers for discretizations with (3).
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The first splitting introduced is a robust smoother for largeκ-range (linearκ-scheme),
−1≤ κ ≤ 0.8;

The second splitting is robust for a smallerκ-range,−0.3 ≤ κ ≤ 0.5, but it is easier to
program for systems of equations. Both splittings are not good smoothers for values ofκ

near 1 (the central difference scheme).
All multigrid components, except the smoother, are standard components, which we

will not discuss in detail. The restriction operator is the full weighting operator [20]; the
prolongation is bilinear interpolation. The discretization on the coarse grids is the direct
discretization from the differential equation on the coarse grid. For problems with discon-
tinuities and the discretization with limiters we will see that it is worth comparing theL2

discretization on coarse grids, calledfull second-order formulationin [7, 19] with theL1

discretization on coarse grids, calledmixed discretization formulation[7].

Smoother. Therobustsmoother we will introduce is of alternating symmetric type. Lines
are processed inx- andy-directions in forward and backward lexicographical ordering. This
smoother is denoted asS= Syb Syf Sxb Sx f . For particular problems it is, of course, possible to
choose the direction of line smoothing “with the flow.” A parallelizable variant is explained
at the end of this subsection.

A part of the robust smoother, thex-line sweep for a forward ordering of grid lines,Sx f ,
is explained in detail. The derivation of the other parts is straightforward. ForSx f , L2 (15)
is split as follows:

L2 = Lx
1/2−

(
Lx

1/2− L2
) =: L+ + L0− (−L−) (16)

with

Lx
1/2:= L+ + L0 =



0

0

0 0 0 0 0

a(2)0−1

a(2)0−2

+


0

0

0 a(1/2)−10 a(1/2)00 a(1/2)10 0

0

0

 (17)

⇒ Lx
1/2φ

m+1 = (Lx
1/2− L2

)
φm + f. (18)

Thea(1/2)∗∗ elements in (17) are the positive partsL1+ Lα, or L1, in the discretizations (3),
(6) to be discussed below. The two splittings differ in the way that coefficientsa(1/2)∗∗ are
defined. We call the smoothers based on both splittings “KAPPA smoothers” here.

Splitting 1.The coefficientsa(1/2)∗∗ include the first-order upwind operatorL1, plus a
“positive” part of the second-order operator:Lα in (3), (5), or (6) plus the parts of the
diffusion operator.

Splitting 2.The coefficientsa(1/2)∗∗ correspond only to the first-order upwind operatorL1

(2) of a discretized equation (plus the parts of the diffusion operator). The smoother from
Splitting 2 is less robust, but it is more generally applicable, since a first-order upwind
discretization is in the left-hand side and the remaining part is in the right-hand side. Other
(point) smoothers in the literature (for example, in [19]) for second-order discretizations
are more often based on Splitting 2.
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Other splittings, based on rewriting (6) like [11]:

(aφ)x = a

h

[
1+ 1

2
9(Ri−1/2)− 1

2

9(Ri−3/2)

R1−3/2

]
(φi, j − φi−1, j )

did not lead to better line smoothers, although the coefficient between square brackets is
also guaranteed to be positive by the properties of limiters.

Choosing thei ± 2 variables also inL0 gives us another alternative, which does not
satisfy the positivity rule. This smoother, resulting in a pentadiagonal solver instead of the
tridiagonal solver, is not considered here.

The meaning of the superscripts{−, 0,+} in (16) is clear when we consider (18) for a
fixed line(i, j0)1≤i≤n:

L0φ∗ = f + L0φm − ((L− + L0)φm + L+φm+1). (19)

L0 corresponds to the unknowns which are smoothed simultaneously.L− is applied to the
old approximationφm, and forL+ new values are already available [20], which is dictated
by the ordering of the grid lines. Inserting an underrelaxation parameterω in (19) leads to

φm+1 = ωφ∗ + (1− ω)φm. (20)

Withω = 1 we regain (18). We can rewrite (19) in the correction formulation, where during
the smoothing iteration a correctionδφm+1 is calculated which is then added to the current
approximation with underrelaxation parameterω:

L0δφm+1 = f − ((L− + L0)φm + L+φm+1)

L0δφm+1 = f − L2φ
m+1/2 (21)

φm+1 = φm + ωδφm+1. (22)

In (21) operatorL2 is appearing in the right-hand side, andφm+1/2 denotesφm or φm+1: it
is the latest value available.

As an example and in order to explain the difference between Splitting 1 and Splitting 2,
we determineL0φ, L−φ, andL+φ for a > 0 andb > 0 in (1) (the example we discussed
in detail in Section 2.1). For thex-line KAPPA smootherSx f from Splitting 1, we then find
with (2), (3):

L0φ =
[
−a

h

(
2− κ

2

)
− ε

h2

]
φi−1, j +

[
a

h

(
2− κ

2

)
+ 4ε

h2
+ b

h

(
2− κ

2

)]
φi, j

+
[
− ε

h2

]
φi+1, j

L+φ =
[

b

h

(
1− κ

4

)]
φi, j−2+

[
−b

h

(
5− 3κ

4

)
− ε

h2

]
φi, j−1

L−φ =
[

a

h

(
1− κ

4

)]
φi−2, j +

[
a

h

(
κ − 1

4

)]
φi−1, j +

[
−a+ b

h

(
1+ κ

4

)]
φi, j

+
[

a

h

(
1+ κ

4

)]
φi+1, j +

[
b

h

(
1+ κ

4

)
− ε

h2

]
φi, j+1. (23)
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From Splitting 2 we obtain

L0φ =
[
−a

h
− ε

h2

]
φi−1, j +

[
a

h
+ 4ε

h2
+ b

h

]
φi, j +

[
− ε

h2

]
φi+1, j

L+φ =
[

b

h

(
1− κ

4

)]
φi, j−2+

[
−b

h

(
5− 3κ

4

)
− ε

h2

]
φi, j−1

L−φ =
[

a

h

(
1− κ

4

)]
φi−2, j +

[
−a

h

(
1− 3κ

4

)]
φi−1, j +

[
−a+ b

h

(
1+ 3κ

4

)]
φi, j

+
[

a

h

(
1+ κ

4

)]
φi+1, j +

[
b

h

(
1+ κ

4

)
− ε

h2

]
φi, j+1. (24)

Notice that both splittings are identical forκ = 0.

Remark. Note that the smoothers explained here for diffusion-dominant problems, or
for problems with diffusion and convection of the same size are well-known line smoothers,
resulting in excellent multigrid convergence rates.

A parallel variant. The symmetric alternating line smoother is a sequential smoother.
The right-hand side of a new linej0 (19) to be processed depends on just updatedφ values
of lines j0− 1 and j0− 2 (or j0+ 1 and j0+ 2). In order to have a parallel smoother, it is
desirable that this dependency is minimized. One possible way is by processing the lines
in a Jacobi-type iteration; only old valuesφm are then appearing in the right-hand side of
(19) andL+ is empty. However, experience has shown that Jacobi smoothers are often less
efficient than smoothers in which recent values are used for new lines.

Another (more efficient) possibility, which is investigated here, is to use a “zebra-type”
smoother in order to achieve parallelism. With the longer stencils (3), (14), each third line
is independent and can be processed at the same time. This means that a parallel zebra type
variant is a tri-line zebra smoother, see Fig. 3.

FIG. 3. Thex-lines that can be processed independently at the same time by a tri-line zebra smoother.
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In case of a tri-line smoother the ordering of processing the three lines influences the
smoothing behavior. A 1-2-3-processing (see Fig. 3) results in other convergence rates
than a 1-3-2-processing of lines. In order to obtain a robust smoother for many convection
directions, we adopt an ordering of 1-2-3, followed by 1-3-2 as one iteration of the (x-line)
tri-line smoother. Note that the alternating tri-line smoother which we will evaluate, is now
as expensive as the alternating symmetric line smoother.

Generalization to 3D. One possible generalization for the smoother presented above
to 3D problems is by means ofmultiple semicoarsening. Instead of keeping the standard
multigrid sequence, in which then an alternating symmetric line smoother in three directions
or for some problems a plane smoother is necessary, one might change the coarsening
sequence and include semicoarsening in one or two directions only, as is done in [23]. By
using the flexible multiple coarsening grid sequence from [23], it is possible to obtain a 3D
robust solution method based on line smoothing.

3. FOURIER ANALYSIS

3.1. General Definitions, Remarks

Fourier analysis is used to study the smoothing and convergence properties of the 2D
multigrid solution method, like in [2, 20, 24]. It is valid, if we deal with linear (or linearized)
operators with constant (or frozen) coefficients (assume “periodic” boundary conditions)
and extend all occurring operators to an infinite gridGh := {x = kxh, kyh) : kx, ky ∈ Z}.
On Gh we consider infinite-grid functions, which are linear combinations of the Fourier
componentsϕ(θ, x) = ei kθ = ei (kxθx+kyθy) with grid pointsx ∈ Gh, k = (kx, ky) and
Fourier frequenciesθ = (θx, θy) ∈ R2.

Fourier components with|θ| := max{|θx|, |θy|} ≥ π are not visible onGh, since they
coincide with componentsei kθ̂, whereθ̂ = θ (modπ ). Therefore, the Fourier spaceεh =
span{ei kθ : θ ∈ 2 = (−π, π ]2} contains any infinite grid function onGh [20]. The basis
functionsei kθ ∈ εh are orthogonal with respect to the inner product:

(vh, wh) := lim
m→∞

1

4m2

∑
|k|≤m

vh(kh)wh(kh) with h = (h, h); vh, wh ∈ εh. (25)

The Fourier spaceεh can be divided into four-dimensional subspaces,the harmonics[20]
(see Fig. 4):

εh
θ = span

{
ϕ(θαxαy, x) = ei kθαxαy ;αx, αy ∈ {0, 1}

}
, (26)

where

x ∈ Gh;θ00 ∈ 200 = (−π/2, π/2]2,

θαxαy = (θx − αx sign(θx)π, θy − αy sign(θy)π).

The discrete solutionφh and the current approximationφm
h can be represented as linear

combinations of the basis functionsei kθ ∈ εh. This carries over to the errorvm = φm− φh

before andvm+1 = φm+1− φh after a relaxation step or a two-grid cycle.
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FIG. 4. High and low frequency regions ofεh with four harmonics.

3.2. Smoothing Analysis

In case of Fourier smoothing analysis we look at the influence of a smoothing operator
S to the high frequency error components. The multigrid idea consists of the assumption
that high frequency error components are smoothed by the relaxation and the low frequency
components are reduced by the coarse grid correction. If standard coarsening is selected
(H = 2h) the componentsϕ(θ00, x) ∈ εh are also visible on the coarse gridGH , whereas the
other componentsϕ(θαxαy, x)with (αx, αy) = (1, 0), (0, 1), (1, 1) aliase with theϕ(θ00, x)
[20]. This observation leads to the distinction between high frequenciesθ ∈ 2h := {θαxαy :
(αx, αy) ∈ {(1, 1), (1, 0), (0, 1)}} and low frequenciesθ ∈ 2l := 200 with 2 = 2l ∪2h

(see Fig. 4). The distinction obviously depends on the coarsening strategy.
The relaxation processS applied to an error componentvm(θ) = Amei kθ results in

vm+1(θ) = Svm(θ), which follows from (19), (20), and the identityL2φh = f . Then, (19)
and (20) for the forwardx-line smootherSx f lead to

Sx f ei kθ = [(1− ω)L̃0(θ)− ωL̃−(θ)] · [ L̃0(θ)+ ωL̃+(θ)]−1ei kθ

⇒ Am+1 = [(1− ω)L̃0− ωL̃−] · [ L̃0+ ωL̃+]−1Am. (27)

This means that the error amplitude is reduced by the factorµ(θ),

µ(θ) = [(1− ω)L̃0(θ)− ωL̃−(θ)] · [ L̃0(θ)+ ωL̃+(θ)]−1, (28)

which is called the amplification factor for the frequencyθ. L̃0(θ), L̃−(θ), andL̃+(θ) are
the Fourier symbols of the corresponding operators.

The definition of the smoothing factor is now given for thex-line smoother by

µ = sup
θ∈2h

|µ(θ)|. (29)

If ν relaxation steps are performed the smoothing factor is given byµν . The definition of
the smoothing factor for the symmetric alternating line smoother is straightforward.
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As mentioned above Fourier analysis cannot take special boundary conditions into ac-
count. It has been observed that sometimes in connection with Dirichlet boundary conditions
a more realistic prediction of the smoothing factor is obtained by leaving out the Fourier
frequencies withθx = 0 or θy = 0 (see [24] and the references therein). This leads to a
definition of the smoothing factor in case of Dirichlet boundary conditions [24]:

µD = sup
θ∈2D

|µ(θ)| with 2D := 2h\{θ : θx = 0 or θy = 0}. (30)

3.3. Two-Grid Analysis

Analogous to Fourier smoothing analysis we also perform Fourier two-grid analysis, so
that the effect of the coarse grid correction and the transfer operators is taken into account
theoretically. Errorvm is transformed by a two-grid cycle as

vm+1 = Sν2
(
I − Ph(L H )

−1RhLh
)
Sν1vm, vm+1 = Sν2CH

h Sν1vm; vm+1 = M H
h v

m. (31)

The spectral radiusρ(M H
h ) of the linear two-grid operatorM H

h is an indication of the
asymptotic speed of the multigrid convergence.

The coarse grid correction operatorCH
h leaves the (four-dimensional) space of harmonics

εh
θ (26) with an arbitraryθ ∈ 2̃00 = 200\{θ : L̃ H (2θ

00) = 0} invariant,CH
h : εh

θ → εh
θ

(see [20]). This is a consequence of the following relations of the transfer and coarse grid
operators:

Lh : εh
θ → εh

θ, L H : span{ϕ(θ, x)} → span{ϕ(θ, x)}, (32)

Rh : εh
θ → span{ϕ(θ, x)}, Ph : span{ϕ(θ, x)} → εh

θ, with θ ∈ 2̃00. (33)

The same invariance property is true for each of the above line smoothers (except the tri-line
smoother):S: εh

θ → εh
θ (θ ∈ 2̃00). Hence,M H

h is orthogonally equivalent to a block matrix
consisting of 4×4 blocks which will be denoted bỹM H

h (θ) := M H
h |εh

θ
(θ ∈ 2̃00) [20]. We

can determine the spectral radiusρ(M H
h ) by calculating the spectral radii of 4×4 matrices:

ρ∗ = ρ(M H
h

) = sup
θ∈2̃00

ρ
(
M̃ H

h (θ)
) = sup

θ∈2̃00

ρ(θ). (34)

To obtain the representation of the 4×4 blocksM̃ H
h (θ) = S̃ν2(I − P̃h(L̃ H )

−1R̃h L̃h)S̃ν1 the
Fourier symbols of the multigrid operators for each harmonic inεh

θ have to be calculated:

S̃ν =


µ(θ00)

µ(θ10)

µ(θ01)

µ(θ11)


ν

,

L̃h =


L̃h(θ

00)

L̃h(θ
10)

L̃h(θ
01)

L̃h(θ
11)

,
R̃h = (R̃h(θ

00), R̃h(θ
10), R̃h(θ

01), R̃h(θ
11)),

P̃h = (P̃h(θ
00), P̃h(θ

10), P̃h(θ
01), P̃h(θ

11))T ,

L̃ H = L̃ H (2θ
00).

(35)
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These symbols are calculated, as is done in [20] for the transfer operators,

L̃h(θ
∗∗) =

∑
µx∈J

∑
µy∈J

ah(2)
µxµy

ei θ∗∗x µx ei θ∗∗y µy (36)

L̃ H (2θ
00) =

∑
µx∈J

∑
µy∈J

aH(2)
µxµy

ei 2θ00
x µx ei 2θ00

y µy (37)

for ah(2)
µxµy

,aH(2)
µxµy

(see (3)).
The relation between smoothing and two-grid analysis becomes clear by comparing the

definition of the smoothing factor (29) and the definition ofρ∗ (34). Smoothing analysis
can be regarded as a simplified two-grid analysis, where we replace theactual coarse
grid operatorCH

h (31) by anidealoperatorQH
h , which annihilates the low frequency error

components and leaves the high frequency components unchanged [20]. WithQH
h obviously

the coupling between the high and low frequencies is neglected. It is a projection operator
onto the space of high frequencies.QH

h can also be represented as a block matrix consisting of
4×4 diagonal blocks̃QH

h (θ). Regarding standard coarsening,Q̃H
h (θ) looks for allθ ∈ 2̃00

like

Q̃H
h =


0

1

1

1

 . (38)

Then definition (29) is equivalent to

µ = sup
θ∈2̃00

ρ
(
S̃(θ)Q̃H

h (θ)
) = sup

θ∈2̃00

ρ(θ). (39)

3.4. Fourier Analysis Results

The equation on which we perform the Fourier analysis is Eq. (1) with fixed directions
a andb: a = cosβ, b = sinβ. Angleβ and parameterε are to be varied. This test problem
is also used in [24], where Fourier smoothing analysis is done for many smoothers on the
first-order upwind discretization of (1). Here, we useκ-scheme discretizations, like (3), and
mainly present results of Splitting 1.

We will give results for the symmetric alternating line smootherS, which was also
shown to be robust in [24] for the standard upwind discretization. In many cases (for many
anglesβ) the alternating line smoother is already showing very satisfactory convergence,
but the symmetric smoother is necessary for robustness over all anglesβ. Three values of
κ are tested:κ = 0, κ = 1/3, andκ = −1. Two cases forε are evaluated:ε = 10−3,
a relatively easy test case; andε = 10−6, where the convection is really dominating.
For underrelaxation parameterω we also evaluate two values,ω = 1 andω = 0.7. We
show three representative values for angleβ for the symmetric alternating line smoother,
β = 0◦, β = 45◦, andβ = 60◦. Other anglesβ (>90◦, for example) lead to identical
results for the smoother under consideration. We compare Fourier smoothing and two-grid
analysis results with numerical calculations for which we take W(0,1)-cycles (meaning no
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FIG. 5. An example of local maximum eigenvalues from Fourier smoothing analysis due to infinite grid
“boundary conditions”h = 1/64 (Splitting 1).

presmoothing, 1 postsmoothing iteration). In the numerical calculations Dirichlet boundary
conditions are set. The discrepancy in boundary conditions between the analysis (infinite
grid “periodic” boundary conditions) and the numerical experiments is reduced by the very
fine grid used. In some casesµD (30) gives a better prediction thanµ. An example, where
µD (removing the eigenmodes belonging toθx = 0 or θy = 0) gives a better prediction of
the actual convergence is the test case:ε = 10−6, β = 0◦, κ = 0, andω = 0.7. Figure 5
showsρ(θ) ∀θ ∈ 2̃00 from Fourier smoothing analysis, whereρ(θ) is the maximum of the
amplification factors for the corresponding three high-frequency harmonics. It can be seen
that only forθx = 0 does a local maximum appear, which is not observed in the multigrid
convergence. The convergence with Dirichlet boundary conditions is better predicted byµD.

In such a case we will mark the value ofµ in the tables below with aD. First we would
like to mention that applying standard line Gauss–Seidel smoothers directly on (3) leads
to smoothing factors larger than 1 (and multigrid divergence). This follows from Fourier
analysis and it is also observed in the numerical experiments.

An important observation follows from the two-grid Fourier analysis results. We observe,
as in the standard upwind case considered in [4, 5], that the characteristic components,
which are constant along the characteristics of the advection operator, are not correctly
approximated on the coarse grid. This phenomenon can be seen from the visualization of
the eigenvalues from the two-grid Fourier analysis. Forβ = 45◦ these eigenvalues are
shown in Fig. 6 forε = 10−3, where a maximum radius of 0.45 is observed along the
characteristic direction, and in Fig. 7 forε = 10−6, where maxima of 0.9 can be seen.

However, we do not observe this bad convergence predicted by the two-grid analysis
in our experiments (as in [5]), since we are studying “inflow/outflow” channel problems
and we are using line smoothers. The smoother on the finer grids then also takes care of
these problematic error components. (In convection-dominant recirculating flow problems
we would use a Krylov acceleration technique [15] to improve the multigrid convergence.)

It means, however, that we cannot useρ∗ (34) as a reliable prediction of the multigrid
convergence. Since the spectrum is continuous, as can be seen in Figs. 6 and 7, it is not
possible to remove some modes in order to estimateρ∗. Therefore, we will give forρ∗
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FIG. 6. Large error components corresponding to low frequency harmonics along the characteristic compo-
nents of the advection operator(a, b)T = (1/√2, 1

√
2)T for ε = 10−3, following from two-grid Fourier analysis

for Splitting 1,h = 1/64.

in the tables below an “intuitive estimation” of the maximum ofρ(M H
h ) away from the

characteristic direction. We look for a local maximum at the boundary of the frequency
domain, not in the characteristic direction. It will be seen that this estimation is often a
good prediction for a multigrid convergence factor. A fine equidistant grid with mesh size
h = 1/256 is chosen inÄ = (0, 1)2.
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FIG. 7. Large error components corresponding to low frequency harmonics along the characteristic compo-
nents of the advection operator(a, b)T = (1/√2, 1

√
2)T for ε = 10−6, following from two-grid Fourier analysis

for Splitting 1,h = 1/64.

The results from Fourier analysis are compared for the test cases mentioned with the
multigrid convergence in Tables 1 and 2. In Table 1 results are presented forε = 10−3,
in Table 2 forε = 10−6. The results from these tables are obtained with the alternating
symmetric KAPPA smoother from Splitting 1. With Splitting 2 results withκ = 0 are
identical, withκ = 1/3 they are similar, but the results withκ = −1 are not robust. For
anglesβ = 20◦ andβ = 70◦ smoothing (and convergence) factors much larger than 1 are
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TABLE 1

A Comparison of Fourier Analysis Results with Multigrid Convergence for the

Convection–Diffusion Equation for ε = 10−3 (Splitting 1), h = 1/256

ε = 10−3

κ = −1 κ = 0 κ = 1/3

β ω = 0.7 ω = 1.0 ω = 0.7 ω = 1.0 ω = 0.7 ω = 1.0

0 µ 0.117 0.050 0.101 0.048 0.123 0.050
ρ∗ 0.124 0.051 0.113 0.059 0.140 0.060

W(0, 1) 0.122 0.055 0.110 0.041 0.120 0.053

45 µ 0.128 0.025 0.155 0.043 0.170 0.056
ρ∗ 0.139 0.028 0.162 0.10 0.173 0.047

W(0, 1) 0.093 0.060 0.220 0.093 0.187 0.050

60 µ 0.156 0.033 0.161 0.046 0.166 0.054
ρ∗ 0.194 0.027 0.185 0.058 0.164 0.046

W(0, 1) 0.183 0.053 0.200 0.094 0.168 0.058

always obtained. An average reduction factor over 100 iterations is taken as the multigrid
convergence rate.

Also results from Fourier smoothing analysis withpointwiseKAPPA smoothers, based
on Splitting 1, show a very satisfactory smoothing behavior: Pointwise smoothers in the
flow direction will lead to very fast optimized multigrid methods for specific problems, and
four-direction point smoothers, where each step starts in a different corner of a rectangular
grid, will be robust for the convection–diffusion problem with respect to all anglesβ.

Tables 1 and 2 show that the smoothing factorµ (µD)and the (intuitive)two-grid factorρ∗

give a very good indication of the actual asymptotic multigrid convergence on the fine grid.

TABLE 2

A Comparison of Fourier Analysis Results with Multigrid Convergence for the

Convection–Diffusion Equation for ε = 10−6 (Splitting 1), h = 1/256

ε = 10−6

κ = −1 κ = 0 κ = 1/3

β ω = 0.7 ω = 1.0 ω = 0.7 ω = 1.0 ω = 0.7 ω = 1.0

0 µ 0.283 0.001D 0.104D 0.079 0.152D 0.175
ρ∗ 0.283 0.004 0.104 0.080 0.153 0.175

W(0, 1) 0.277 0.001 0.100 0.080 0.145 0.176

45 µ 0.226 0.057 0.365 0.177 0.432 0.289
ρ∗ 0.236 0.053 0.360 0.165 0.452 0.308

W(0, 1) 0.320 0.050 0.420 0.180 0.407 0.277

60 µ 0.347 0.107 0.473 0.220 0.567 0.326
ρ∗ 0.334 0.083 0.455 0.152 0.560 0.327

W(0, 1) 0.356 0.050 0.360 0.140 0.452 0.330
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The dependence of the convergence on different values ofκ, ε, orω is very well predicted
by Fourier analysis. Furthermore, the convergence of the W(0,1)-cycle is very satisfactory.
Forε = 10−3 all convergence factors are smaller than 0.3 forκ = −1 andκ = 0 andω = 1
even smaller than 0.1. Also, for the difficult test caseε = 10−6 the convergence rates are
small, especially forκ = −1. It appears thatω = 1 (no underrelaxation) is best for the test
cases considered with the alternating symmetric KAPPA smoother.

Remark. Note that for the convection-dominated scalar problems the single grid line
solvers (using the smoother as a solver) also give a very satisfactory convergence. For scalar
problems with regions of dominating convection and diffusion, of course, multigrid is again
necessary for good convergence. We will show the benefits of multigrid (compared to single
grid) by analyzing the convergence of problems with a nonconstant convection direction in
the the next section.

Remark. The spectral radiusρ is, of course, a measure of the asymptotic convergence
of a solution method. In case of convection-dominated problems (resulting in nonsymmet-
ric matrices) it might take a long time before asymptoticity is observed. As an alternative
it makes sense to consider norms of the iteration matrix, as in [20], or half-space FMG
estimates as a practical measure of convergence, as is done in [3]. We again refer to the
problems in the next section to observe the actual convergence for some representative test
problems.

We do not perform Fourier analysis for the alternating tri-line smoother from Section 2.2,
but we apply this smoother to the same problems that are presented in the Tables 1 and
2. In Table 3 we show the multigrid convergence for the alternating tri-line smoother with
ω = 0.7 for κ = 0, ε = 10−6 for different numbers of pre- and postsmoothing iterations.
The first column of Table 3 can be compared to the results in Table 2. In Table 3 we also
evaluateβ = 225◦, since for this smoother the results obtained are not angle-independent,
as mentioned in Section 2.2. It is found that for all angles satisfactory convergence results
are obtained also with the alternating tri-line smoother. From Table 3 it can be seen that the
convergence obtained with the tri-line smoother is a bit worse than the convergence with
the symmetric alternating line smoother in Table 2 (which is to be expected). Furthermore,
it can be seen that the multigrid convergence strongly improves when more smoothing
iterations are performed. The addition of one smoothing iteration has more than doubled
the multigrid convergence speed in the cases considered.

TABLE 3

Multigrid Convergence for the Alternating

Tri-line Smoother for the Convection–Diffusion

Problem with κ = 0, ε = 10−6

β W(0, 1) W(0, 2) W(1, 2)

0 0.18 0.036 0.008
45 0.58 0.22 0.055
60 0.57 0.16 0.048

225 0.49 0.13 0.056
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FIG. 8. Spectrum of the multigrid iteration matrix with the alternating tri-line KAPPA smoother,ε = 10−6.
β = 0◦, κ = 0, h = 1/32.

We would like to conclude with two pictures of the eigenvalue spectra of multigrid
iteration matrices for a problem investigated in this section (ε = 10−6, β = 0◦, κ = 0) on a
32× 32 grid. The first picture, Fig. 8, shows the spectrum obtained with theW(0,1)-cycle
and the alternating tri-line KAPPA smoother withω = 0.7. One sees the clustering around
the origin and a spectral radius of 0.1 on this relatively coarse grid.

The second picture, Fig. 9, is the spectrum found for the same problem with the classical
defect correction iteration. The first-order discretization, which is inside the defect correc-
tion technique, is solved with high accuracy by a multigrid solver. In Fig. 9a completely
different spectrum is found without a clustering around the origin and a spectral radius of
0.5. The difference in spectra of Figs. 8 and 9 is remarkable.

4. NUMERICAL RESULTS

The problems in this section are solved with the multigrid methods described in
Section 2.2. In some of the experiments we compare the convergence with the defect
correction convergence. The initial iterandφ0

h is mostly obtained with the full multigrid
method (FMG). We fix the underrelaxation parameterω for the different smoothers that
are evaluated here: The symmetric alternating KAPPA smoother based on Splitting 1 is
always used without damping(ω = 1), the symmetric alternating KAPPA smoother based
on Splitting 2 uses underrelaxationω = 0.7, as both alternating tri-line KAPPA smoothers.
These values showed the best multigrid performance for the problems in the previous
section.
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FIG. 9. Spectrum of the defect correction iteration matrix with a multigrid solver for the inner iteration,
ε = 10−6, β = 0◦, κ = 0, h = 1/32.

4.1. Convection–Diffusion with Analytical Solution

For the first example we consider the convection–diffusion equation (1) with the convec-
tive terms coming from the Smith–Hutton problem [17],

−ε1φ + 2y(1− x2)φx − 2x(1− y2)φy = f, (40)

whereε is a small positive number(ε = 10−6). This problem is interesting, since many
angles are encountered by the definition ofa(x, y) andb(x, y). This means that (40) is a
good indication for the robustness of a solver. The domain is chosen as

Ä = {(x, y);−1≤ x ≤ 1, 0≤ y ≤ 1}. (41)

In the first example right-hand sidef and the Dirichlet boundary conditions are chosen
such that a smooth analytical solution results:

φ = x4+ y4. (42)

A limiter is not necessary for this problem, and we can compare the accuracy of the
κ-schemes. The multigrid convergence is shown with the symmetric alternating KAPPA
smoother(ω = 1) and the tri-line alternating zebra KAPPA smoother(ω = 0.7) from
Splitting 1 on a fine grid(hx, hy)

T = (2/256, 1/128)T . A multigrid V-cycle processing
seven levels is used with two pre- and one postsmoothing iterations. We present results for
κ = 0 andκ = −1. Furthermore, in Figs. 10a and 10b the convergence of the classical
defect correction iteration is presented.
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FIG. 10. The multigrid convergence of three approaches for the Smith–Hutton problem with analytical solution
with (a)κ = 0 and (b)κ = −1; 256× 128-grid.

The multigrid convergence with both KAPPA smoothers is very satisfactory: The best
smoother converges within five multigrid iterations. The symmetric alternating line smoother
is twice as fast as the tri-line smoother for this problem. For this smooth problem the im-
provement in the higher order residual reduction, compared to the classical approaches,
for κ = 0 is very satisfactory. It can be seen that the convergence of defect correction
stops for the discretization withκ = −1. However, the difference inL2-norm between
the numerical solution and the analytical solution for the defect correction iteration and
the KAPPA smoothers is almost the same. Table 4 presents the number of iterations and
the wall-clock time needed to reduce the initial residual by six orders of magnitude. This
can be seen as an indication for the convergence in the initial stage of residual reduction,
which is not indicated by a spectral radius. The wall-clock times are relatively large, since
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TABLE 4

Level Independent Convergence and Corresponding Wall-Clock Time in Seconds (in Brackets)

with Two κ-Schemes for a Convection–Diffusion Problem with an Analytical Solution

Alt. symmetric smoother Alt. tri-line smoother

Grid κ = 0 κ = −1 κ = 0 κ = −1

64× 32 3 (1.1) 3 (1.1) 5 (2.6) 6 (3.2)
128× 64 3 (6.4) 3 (6.4) 6 (11.8) 8 (15.0)
256× 128 3 (24.9) 4 (32.8) 7 (54.5) 9 (70)
512× 256 3 (102.5) 4 (136) 9 (286) 10 (320)

the implementation is not done most efficiently. The emphasize has been laid upon storage
reduction, not on obtaining the best timings. Operator elements are recalculated on every
grid, although the operator and the discretization are linear. It can be seen that with the sym-
metric alternating line smoother a very fast and level independent convergence is obtained
for this test problem. (For these grid sizes, also the single grid solver is still very fast and in
wall-clock time comparable to the multigrid convergence.) The number of iterations grows
somewhat for increasing grid sizes with the tri-line smoother. In Table 5, we can observe
the accuracy of theκ-schemes by comparing the numerical to the analytical solution on fine
grid sizes. We present the difference inL∞-norm andL2-norm and an estimation of the
discretization orderp. It can be seen from Table 5 that second-order accuracy is obtained
for bothκ-values. Further, it should be mentioned that the second-order accuracy is already
reached after one FMG cycle.

4.2. Convection–Diffusion with Discontinuous Boundary Condition

The second problem is also based on Eq. (40), the Smith–Hutton problem withf = 0
on domain (41). The difficulty comes from the boundary condition which looks like

φ|∂Ä = 2 on∂Ä:− 1

2
≤ x ≤ 0.5, y = 0

φ|∂Ä = 0 elsewhere.
(43)

TABLE 5

The Accuracy Achieved with theκ-Scheme for a Convection–Diffusion Problem

with an Analytical Solution

κ-Scheme Grid ‖φ‖∞ p∞ ‖φ‖2 p2

κ = 0 64× 32 5.7486× 10−3 — 1.5095× 10−3 —
128× 64 1.5041× 10−3 1.93 3.1204× 10−4 2.27
256× 128 4.0707× 10−4 1.88 7.1283× 10−5 2.13

κ = −1 64× 32 9.1171× 10−3 — 2.8992× 10−3 —
128× 64 2.4513× 10−3 1.89 6.3281× 10−4 2.19
256× 128 6.5561× 10−4 1.90 1.4332× 10−4 2.14
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FIG. 11. The solution of the Smith–Hutton problem with discontinuous boundary condition.

The solution contains a step-like discontinuity which moves along the characteristics of the
advection operator. Limiters are really necessary to assure an accurate solution. Figure 11
presents the solution. Instead of investigating the sharpness of the discontinuity profile
with different limiters, as is done in many other papers like [17], or for other problems
for example in [16 or 14], we concentrate on the convergence of the multigrid solution
methods. Again the multigrid convergence on the fine grid(hx, hy)

T = (2/256, 1/128)T

is investigated with V(2,1)-cycles. Here, we present results obtained with the alternating
tri-line smoothers and evaluate the difference in convergence between the smoothers based
on Splitting 1 and Splitting 2 for the limited discretizations. Often, for example, for several
systems of equations it is more expensive to computeL2φ thanL1φ, even on coarse grids.
Therefore, we test whether for this problem with a step discontinuity solution it makes
sense to use a discretization based onL1 on the coarse grids as well. Figure 12 presents the
multigrid convergence results with two limiters from the first class of limiters, the ISNAS
limiter (9) (see Fig. 12a), the van Leer limiter (8) (see Fig. 12b), and one limiter from the
second class of limiters, the SMART limiter (11) (see Fig. 12c).

Very satisfactory convergence is observed from Figs. 12a and 12b. Especially the “engi-
neering accuracy”|( f − L2φ

m)|/|( f − L2φ
0)| ≤ 10−6 is reached very fast. Furthermore,

it is observed that the difference in convergence withL1 as the coarse grid discretization is
not significant. Also we see that smoothers based on both Splitting 1 and Splitting 2 result
in acceptable convergence on this fine grid. These results were found to be representative
for other limiters from this first class.

In Fig. 12c it is shown that for the 2R-based limiter SMART multigrid algorithms, based
on Splitting 2, have convergence problems. The smoothers based on Splitting 1 do not
show regular convergence, but the residual is reduced by six orders of magnitude after 30
iterations, which is satisfactory. Further, we show for the ISNAS and the van Leer limiters,
that for these scalar convection-dominated problems, it is not so easy to beat the single grid
solver (using the smoother as a solver). Actually, only on very fine grids are the benefits
of multigrid (tri-line smoother, Splitting 2, full second-order formulation) solvers clearly
observed. The fastest multigrid solver is here the V(0,1)-cycle in case of the van Leer limiter,
which is not level independent in convergence. The number of iterations of the single grid
solver on the 256×128 grid with the van Leer limiter until engineering accuracy is reached
is 39, taking 110 s. The V(0,1)-cycle took 26 iterations and 96.5 s. On a 4 times finer grid
the single grid solver takes 72 iterations in 831 s, while 42 iterations in 645 s are needed by
a V(0,1)-cycle (without nested iteration). For the ISNAS limiter, we find that the single grid
solver takes 44 iterations and 126 s; the V(0,1)-cycle takes 30 iterations and 110 s. On the
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FIG. 12. The multigrid convergence with the two splittings for the alternating tri-line smoother, Smith–Hutton
problem with discontinuous boundary condition, 256× 128 grid: (a) convergence with the ISNAS limiter (9):
(b) with the van Leer limiter (8); (c) with the SMART.
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512× 256 grid the difference is more pronounced: 76 iterations in 887 s for the single grid
solution method and 29 iterations in 758 s for the V(1,1)-cycle, which appeared to be fastest
for the ISNAS limiter on this fine grid. On coarser grids the solution times for single and
multigrid solvers based on this alternating symmetric line solver are more or less identical.

4.3. Nonlinear Problem with a Shock

We consider the following nonlinear convection-dominated conservation law:

−ε1φ +
(
φ2

2

)
x

+ φy = 0 (44)

Again we putε = 10−6 and boundary conditions are given along thex-axis by

φ0 = 1

2
(sin(πx)+ 1). (45)

This scalar nonlinear problem is also studied and described in detail in [16]. The computa-
tional domain is:Ä = {(x, y); 0≤ x ≤ 3, 0≤ y ≤ 2}.

The exact solution is constant along the characteristic lines(φ, 1)T . For every point (x, y)
we can find a boundary point (x0, 0), where the characteristic line goes through by solving
the implicit equation:x0 = x − φ0(x0)y. The solution becomes unique if we discretize
by a conservative finite volume discretization, i.e. if we satisfy the entropy condition for
hyperbolic conservation laws [16]. The solution shown in Fig. 13 will contain a shock wave
along the liney = 2x − 2. Limiters are necessary for an accurate solution of this problem.

We will investigate the multigrid convergence for the ISNAS and van Leer limiters
from class 1 and for the SMART limiter from class 2. Again a very fine grid is chosen
to see asymptotic convergence:(hx, hy)

T = (3/384, 2/256)T . The multigrid V(2,1)-cycle
is performed on eight multigrid levels. We chooseL2 as the coarse grid discretization in
this test and compare the alternating symmetric KAPPA smoother from Splitting 1 with
Splitting 2 and with the alternating tri-line smoothers. (The underrelaxation parameters
were given at the beginning of this section.) Figure 14a presents the convergence results for

FIG. 13. Characteristic lines and shock wave for the nonlinear problem.
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FIG. 14. The multigrid convergence for the nonlinear problem containing a shock with the two splittings for
the alternating symmetric and the alternating tri-line smoother, 384× 256 grid: (a) convergence with the ISNAS
limiter (9); (b) with the van Leer limiter (8); (c) with the SMART limiter (11).
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TABLE 6

Convergence for the Nonlinear Problem with Two Limiters on

Different Grids, Splitting 2, Full Second-Order Formulation

Alt. symmetric smoother Alt. tri-line smoother

Grid v. Leer ISNAS v. Leer ISNAS

96× 64 12 10 12 10
192× 128 14 14 16 15
384× 256 16 21 22 26

the discretization with the ISNAS limiter, Fig. 14b shows convergence with the van Leer
limiter, and Fig. 14c shows convergence with the SMART limiter.

A similar convergence as for the previous Smith–Hutton problem can be seen in the
Fig. 14. Splitting 2 gives a somewhat better convergence for the limiters from class 1 than
Splitting 1. Furthermore, the behavior of the symmetric and the tri-line smoother is similar
to the previous problems. In the worst case 10 extra multigrid iterations are necessary for
the parallel variant.

For the SMART limiter again the convergence stops with smoothers based on Splitting 2,
whereas better convergence is obtained with the smoother from Splitting 1. The difference in
convergence between discretizations based on limiters from class 1 and class 2 is remarkable.
The difference in accuracy with different limiters on these fine grids is relatively small. The
convergence until engineering accuracy is reached on several grids is presented in Table 6.
Although the convergence is not fully level independent, it is considered very satisfactory,
especially for the symmetric alternating line smoother. Finally, the single grid solver behaves
for this convection-dominated nonlinear scalar problem similarly as for the Smith–Hutton
problem from the previous subsection.

4.4. An Incompressible Navier–Stokes Driven Cavity Example

Next, an incompressible flow example is treated. The 2D steady incompressible Navier–
Stokes equations are written as a system of equations as

∂f
∂x
+ ∂g
∂y
= ∂fv

∂x
+ ∂gv

∂y
, (46)

wheref andgare the components of the convective flux vector, andfv andgv are the viscous
fluxes:

f =
 u2+ p

uv

c2u

 , g=
 uv

v2+ p

c2v

 , fv =
 1

Re∂u/∂x
1

Re∂v/∂x

0

 , gv =
 1

Re∂u/∂y
1

Re∂v/∂y

0

 .
Here u andv are Cartesian velocity unknowns,p is pressure,c is a constant reference
velocity, and Re is the Reynolds number defined as Re= Ū · L/ν, with Ū a characteristic
velocity, L a characteristic length, andν the kinematic viscosity.
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We solve the incompressible Navier–Stokes equations in the primitive variables. The
2D vertex-centered discretization of (46) (on a collocated grid) is Dick’s flux difference
splitting, presented in [6]. The resulting stencil from a first-order discretization looks like

− 1
Re1+ 2u∂x + v∂y− u∂y− ∂x−

h
2

(
|v|∂yy + 2u2+c2√

u2+c2
∂xx

)
huv

2(v2+c2)
(2
√
v2 + c2 − |v|)∂yy

hu
2

(
1√

u2+c2
∂xx +

√
v2+c2−|v|
v2+c2 ∂yy

)
v∂x− − 1

Re1+ u∂x + 2v∂y− ∂y−
huv

2(u2+c2)
(2
√

u2 + c2 − |u|)∂xx
h
2

(
|u|∂xx + 2v2+c2√

v2+c2
∂yy

)
hv
2

(
1√
v2+c2

∂yy +
√

u2+c2−|u|
u2+c2 ∂xx

)
c2∂x− c2∂y−
hc2u

2
√

u2+c2
∂xx

hc2v

2
√
v2+c2

∂yy
hc2

2

(
1√

u2+c2
∂xx + 1√

v2+c2
∂yy

)


,

(47)

where the three entries are for(u, v, p)T , respectively. Here∂ represents a central dis-
cretization; the terms∂xx and∂yy are artificial dissipation terms.

Second-order accuracy is achieved by replacing the first-order convective discretization,
which is implicitly in (47) by (3) withκ = 0. Then, the resulting stencil is similar to (47)
with higher order artificial dissipation terms. For incompressible Navier–Stokes equations
it is not necessary to implement a limiter. For many different (2D and 3D) problems at low
and high Reynolds numbers oscillations (for example, in the pressure distribution, as they
occur near discontinuities for compressible flow problems) did not appear.

A well-known 2D test case is the lid-driven cavity flow in a unit square. Although
this problem is a rotating flow problem for which standard multigrid schemes might have
convergence difficulties, we do not observe these difficulties, since a moderate Reynolds
number (Re= 1000) is evaluated here. We solve this problem on a 1922 grid with stretching.
With the 1922 stretched grid the centerline velocity profiles agree very well with reference
results from [9]. (A very similar profile is already obtained by solving the problem on a
64×64 equidistant grid.) Figure 15 presents the u-velocity profile in the vertical centerline
of the cavity.

The multigrid FAS scheme used for solving this problem is the same as for the scalar
problems. The KAPPA smoother is nowa coupled collectivesymmetric alternating line
smoother and a coupled collective alternating tri-line smoother, which means that the three
unknowns belonging to a grid point are smoothed simultaneously. For line smoothers this
means that not only a tri-diagonal system, but a system with more diagonals (referring to all
unknowns on the line) is solved in a smoothing iteration. (Since we chooseκ = 0 we have
identical smoothers from Splitting 1 and Splitting 2 and the discretization from (47) is in the
left-hand side of the KAPPA smoothers. The underrelaxation parameters are the same as
presented above;ω = 1 for the symmetric andω = 0.7 for the tri-line smoother.) Because
of the rotating problem, we perform F-cycles. For the symmetric smoother F(1,0)-cycles are
used, while for the tri-line smoother F(1,1)-cycles are used. Note that the alternating tri-line
smoother is now twice as expensive as the alternating symmetric smoother. The convergence
of the residual

∑ieq
i=1 |r i (m)|∞ (where the number of equationsieq = 3) is presented in

Fig. 16, where we also compare the coarse grid discretization withL2 and withL1.
It can be seen that a very fast multigrid convergence is obtained for this test problem

with the alternating symmetric KAPPA smoother withL2-coarse grid discretizations. Here,
a difference in convergence can be observed between choosingL1 or L2 as coarse grid
discretization; choosingL2 results in fastest convergence. Also the difference between the
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FIG. 15. The u-centerline velocity profile for first- and second-order accurate discretizations versus reference
values from [9].

symmetric and the tri-line smoother is clear, but the worst convergence presented here is
still very satisfactory. We give the wall-clock times needed to perform the computations
that lead to the curves in Fig. 16 which is the time to perform 10 multigrid cycles plus FMG
for the starting solution on the finest grid. The timings are performed on a single RS6000
workstation. For 10 F(1,0)-cycles (+FMG) with the symmetric collective smoother and

FIG. 16. The multigrid convergence for the driven cavity problem(Re= 1000)with the alternating symmetric
and the alternating tri-line smoother for 192× 192 stretched grid.
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TABLE 7

Number of Iterations and Wall-Clock Time (s) for

Reducing the Initial Residual by Six Orders of Mag-

nitude for Driven Cavity Problem at Re = 1000

Grid No. its. Wall-clock time (s)

642 15 (58.0)
1282 10 (156.0)
1922 8 (284.0)
2562 8 (505.0)

the L2 coarse grid discretization 398 s are needed; for 10 F(1,0)-cycles withL1 coarse
discretizations 322 s are needed. The 10 F(1,1)-cycles with the tri-line collective smoother
andL2 coarse grid discretizations took 700 s and withL1 coarse discretizations it took 570 s.

Finally, we would like to show the convergence with increasing grid sizes for this prob-
lem with the symmetric alternating line smoother and the full second-order formulation.
Therefore, we here consider the convergence on 642, 1282, and 2562 grids without stretch-
ing. In Table 7 the number of iterations needed to reduce the initial residual by six orders
of magnitude is presented, and the numbers within brackets correspond to wall-clock time
(the FMG stage included). Due to improving mesh-Reynolds numbers (local ratio between
convection and diffusion) the convergence improves for increasing grid sizes, as can be
seen in Table 7. The single grid convergence for this problem is very poor; the wall-clock
times are not comparable to the multigrid wall-clock times.

4.5. An Euler Channel Flow Problem

A last example is the compressible Euler flow in a channel with a bump. The 2D steady
compressible Euler equations are written in their differential form as

∂ f (u)
∂x
+ ∂g(u)

∂y
= ∂

∂x


ρu

ρu2+ p
ρuv

(E + p)u

+ ∂

∂y


ρv

ρuv
ρv2+ p
(E + p)v

 = 0

p = (γ − 1)

(
E − 1

2
ρ(u2+ v2)

)
, (48)

whereρ is the density,u andv are the Cartesian velocity components,E is the total energy,
p is the pressure, andγ (assumed to be constant) is the ratio of the specific heats at constant
pressure and constant volume.

The vertex-centered finite volume discretization adopted for the Euler equations is de-
scribed briefly. It is based on the cell-centered discretization in [18, 13]. For the finite volume
discretization the domainÄ is divided into control volumesÄi, j . For each quadrilateral (48)
must hold in integral form,∮

∂Äi, j

( f (u)nx + g(u)ny) dS= 0, (49)



                 

304 OOSTERLEE ET AL.

where(nx, ny)
T = (cosφ, sinφ)T is the outward normal vector on∂Äi, j and u is the

state vector. The rotational invariance of the Euler equations is used, and the discretization
results in ∑

(ik)∈ k(ik)

F(uL , uR)∂Sik = 0 (50)

with k(ik) being the set of neighboring cells ofÄi, j , ∂Sik is the length of the boundary
betweenÄi, j andÄik ; F(uL , uR) is an approximate Riemann solver, which depends on the
left state,uL , and the right state,uR, along the cell boundary. The discretization requires a
calculation of the convective flux at each cell face∂Si, j . The approximate solutionF(uL , uR)

of the 1D Riemann problem is solved with an approximate Riemann solver proposed by
Osher in its P-variant (for more details see [18, 13]),

F(uL , uR) = 1

2
( f̃ (uL)+

(
f̃ (uR)−

∫ uR

uL

|A(u)| du

)
, (51)

where |A(u)|(= A+(u) − A−(u)) is a splitting of the Jacobian matrixA into matrices
with positive and negative eigenvalues andf̃ is the one-dimensional flux along the normal
vector. State vectoru = (u, v, c, z)T is chosen, wherec ≡ √γ p/ρ is the speed of sound
andz≡ ln(pρ−γ ) is an unscaled entropy.

The statesuL
i+1/2, j anduR

i+1/2, j in (51) are approximated by a discretization with van Leer
limiter (8) in order to avoid oscillations that may appear near shocks.

A transonic problem (Ma= 0.85) in a channel with a bump is evaluated. The bump
in the channel is a 4.2% circular bump, the height of the channel is 2.1. Its length is 5;
the bump length is 1. The pressure distribution of the transonic test is presented in Fig.
17. The domain is discretized with 96× 64 cells, which results in a multigrid method
with five levels. With the smoother from Splitting 2 the second-order discretization for
the Euler equations is solved directly with V(2,1)-cycles. The smoother from Splitting 2
showed the best convergence results for discretization with limiters from class 1. Again we
compare the multigrid performance with coarse grid discretizations based onL2 with L1

FIG. 17. The pressure distribution for the transonic test Ma= 0.85 for 96× 64-grid.
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FIG. 18. The multigrid convergence for a transonic Euler example(Ma= 0.85)with the alternating symmetric
and the alternating tri-line smoother for 96× 64 stretched grid.

and the alternating symmetric smoother with the alternating tri-line smoother (ω = 0.7).
Figure 18 presents the convergence

∑ieq
i=1 |r i (m)|∞ with ieq = 4 andm as the multigrid

iteration.
For this Euler test, where a shock appears in the solution, similar convergence is obtained

as for the scalar problems with the van Leer limiter. It appears to be best for this test problem
also to adopt theL2 discretization on the coarse grids. The convergence is very satisfactory
for both the alternating symmetric and the alternating tri-line smoother. Table 8 presents
the number of iterations to reduce the initial residual by six orders of magnitude plus the
corresponding wall-clock time on different grids. Here we would like to mention that the flux
difference splitting is not implemented in the most efficient way, which strongly influences
the wall-clock times. One can observe level-independent convergence from Table 8 for this
transonic Euler problem. Here, the single grid convergence is poor and not comparable to
the multigrid convergence.

TABLE 8

Number of Iterations and Wall-Clock Time (s) for Re-

ducing the Initial Residual by Six Orders of Magnitude

for Transonic Euler Channel Problem at Ma = 0.85

Grid: No. its. Wall-clock time (s)

48× 32 10 (123.0)
96× 64 11 (511.0)

192× 128 10 (1844.0)
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5. CONCLUSION

We have presented KAPPA smoothers for convection-dominated problems. The
smoothers are based on a splitting into a “positive” part in the left-hand side and a remaining
part in the right-hand side. For linearκ-discretizations, we have performed Fourier analysis
for a convection-dominated convection–diffusion equation in order to study the multi-
grid convergence behavior theoretically. Furthermore, a parallel variant is presented and
evaluated. In general, it is preferable to use the line smoothers based on lexicographical
ordering compared to the tri-line variant. The KAPPA smoothers show a very promis-
ing multigrid convergence with linearκ-discretizations, not only for convection–diffusion
problems, but also for an incompressible Navier–Stokes flow problem. Next to linearκ-
discretizations also TVD discretizations with limiters are evaluated for “difficult” scalar
equations and for a compressible Euler channel flow problem. Also here the convergence
presented is very satisfactory; the reduction of the residual from the higher order dis-
cretization is remarkable. We could observe a fast and robust convergence for several prob-
lems, especially for discretizations with limiters from class 1. The single grid convergence
for the scalar convection-dominated problems is also satisfactory on not too fine grids.
Many tests with two different splittings, choosing the coarse grid discretization with the
first-order or the second-order discretization, and the comparison between the alternating
symmetric and the alternating tri-line smoother gave much insight in the behavior of the
smoothers.
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